
JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, VOL. 9,672-676 (1996) 

QUANTITATIVE STRUCTURE-ENANTIOSELECTIVITY 
RELATIONSHIPS USING NEURAL NETWORKS. BIOCONVERSION OF 

CARBONYL COMPOUNDS USING BAKER’S YEAST 

DRISS ZAKARYA 
Faculte‘ des Sciences et Techniques, B.P. 146, Mohammedia. Morocco 

LAHBIB FARHAOUI 
Faculte‘ des Sciences et Techniques, B.P. 146, Mohammedia and Laboratoire de Chimie des Plantes et de Synthese Organique et 

Bioorganique, Facultk des Sciences, Rabat, Morocco 

AND 
SOU AD FKIH-TETOUANI 

Laboratoire de Chimie des Plantes et de Synthese Organique et Bioorganique, Faculte‘ des Sciences, Rabat, Morocco 

Quantitative structure-enantioselectivity relationships were studied for the reduction of a set of 73 carbonyl 
compounds with bakers yeast. The established model, using a neural network, allowed the prediction of the 
reduction selectivity (% S enantiomer) with success. The correlation coefficient between the observed and 
calculated %S was 0.99. The model was also used to predict the enantioselectivity of the reduction of a- 
diketones using bakers yeast and different microorganisms. 

INTRODUCTION 

Baker’s yeast is cheap and easily available and is often 
used as reagent in the conversion of carbonyl compounds 
to the corresponding alcohols. The reduction with baker’s 
yeast does not always afford alcohols with the desired 
configuration in satisfactory enantiomeric excess. For 
example, the reduction of ethyl 3-oxobutanoate and ethyl 
3-oxopentanoate under the same conditions leads to very 
different results: the former gives a good enantiomeric 
excess (70-97%)’ whereas the latter gives unsatisfactory 
results (40% enantiomeric excess).’ Hence methods for 
controlling the stereochemical course in yeast reduction 
are required. It seemed of interest to elaborate structure- 
enantioselec tivity relationships. 

In previous work,3 we studied the effect of structural 
parameters on enantioselectivity control in the reduction 
of 41 carbonyl compounds by baker’s yeast under 
relatively similar conditions (e.g. amounts of yeast and 
glucose, reaction time). In the present work, we 
attempted to extend the approach to a more important 
set of carbonyls, in order to establish quantitative 
structure-enantioselectivity relationships. The best 
model obtained was tested in the prediction of the 
stereochemistry of alcohols resulting from bioconver- 
sion of carbonyls. 

* Author for correspondence. 

EXPERIMENTAL 

Data set and structure coding 
A set of 73 carbonyl compounds was taken from differ- 
ent literature sources (Table 1). Bioconversions of these 
compounds were carried out under the following condi- 
tions: no cofactors such as halo ester^,^' allylic 
alcohols33 a, B-ethyienic ketonesM were added; solvent: 
water; 10-20% glucose in the solvent; amounts of 
substrate 0.1 -0.5 mmol/g of baker’s yeast; tempera- 
ture: ca room temperature; reaction time: 12-72 h. 
Only the structural parameters were taken into account 
in the enantioselectivity modelling. 

As all the compounds studied have a common C=O 
group, the description of the molecules was simplified, 
and each was described by a set of variables coding 
radicals linked to the C=O group. In order to obtain a 
homogeneous description for all the molecules studied, 
R, was considered as the group which had priority 
according to the Cahn-Ingold-Prelog rules (CIP). In 
addition to this hypothesis, substituents were assigned 
both R, and R, for each molecule. The generated set of 
molecules was treated. 

In order to take into account all aspects of the mol- 
ecule, parameters related to steric effects (Vi, Van der 
Wads volume of Ri)3s and lipophilicity (Lip,, estimated 
according to Rekker’s method36) were selected. 
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Table 1. Compounds studied 

No. Structurea 

1 CH,COCH,COCH, (99.5; 99.5), 
2 CH,COCH,COCH,CH, (99.5; 99.9), 
3 CH,COCH,CO(CHz),CH=CH2 (99.5; 99), 
4 CH,COCH(CH,)COCH, (97.5; 99.3), 
5 CH,COCH(CH,)CN (91; 94.6)' 
6 CH3COCH(C2Hs)CN (99; 99.8)' 
7 CH,COCH(C,H,)CN (99; 99.9)' 
8 CH,COCH(C,H,)CN (99; 99.9)' 
9 CH3COCH2COOC2HS (97.5; 99.9)' 

10 CH,COCH,CH,CN (99; 96.4)7 
11 CH,CH,COCH2CH2CN (73; 71.7)7 
12 CH,COCHzCH,CH,CN (98.5; 99.8)7 
13 C,HIlCOCH2CH,CN (14; 15.9)7 
14 NCCH2CH2COC6Hs (92.5; 97.8)7 
15 CH,COCH,COOH (93; 98)' 
16 C2H,COCH,COOH (1; 14)' 
17 n-C,H,COCH,COOH (1 ; 2)' 
18 ~-CsHllCOCH2COOH (1; 0.8)' 
19 n-C,H17COCHzCOOH (1; 0.5)' 
20 p-(CO,H)C,H,COCF, (10; 11.7)' 
21 p-(CH,OOC)C,H,COCF3 (10; 7.3)' 
22 CH,COCH(Cl)COOC2H, (98; 99.9)" 
23 C6HSCOCH20H (4; 0.4)" 
24 C,H=,COCH,OCOC2H, (97; 95.8)" 
25 CH,COCH20CHzC6H5 (95; 99.9)" 
26 C2HSOCOCH2COCF3 (27.5; 21.2)'' 
27 CH3CHzCOCH,COOCH, (94.5; 92.6)13 

29 C2HSCOOCHzCOC,Hs (100; 99.8)" 

31 CH,COC,Hs (84.5; 99.9)17 

33 n-C4HyCOCOOCzH, (75; 72.9)'' 
34 n-CSH~~COCOOC~H~ (65; 66.7)'' 
35 CH3COCH2COO(CH2),CH, (98; 99.9)'' 
36 CH,COCH,COOCH, (93; 98.7)'" 
37 CH30COCH2COCF3 (26; 29.5)20 

28 CH,CH,COCH~COO-~-C,H,, (99; 100)14 

30 CH,COCH,CH,CH=C(CH3)2 (97; 

32 p-(CH,CO)C,H,I (98; lOO)I7 

No. Structurea 

38 CH~OCOCHZCOCH~CI (77.5; 85)'" 
39 C2H5OCOCH2COCH2Cl (75; 77.9)'" 
40 n-C,H7OCOCH2COCHzC1 (60; 99.8)'" 
41 n-C,HyOCOCHzCOCH2Cl (60; 45.6)2" 
42 n-C~HllOCOCH2COCH2Cl(5; 19)20 
43 n-C,Hl,OCOCH2COCH$l (2.5; 05)'" 
44 n-C7H~~OCOCH2COCH~Cl (1.5; 1.5)2" 
45 n-C,Hl7OCOCH2COCH,CI (1; 0.7)2') 
46 CH,COCH,CSSCH, (98; 99.5)2' 
47 CH3COCH2CSSC2Hs (98; 99.9)" 
48 CH,COCH(CH,)CSSCH, (98; 99.9)" 
49 CH,COCH,COSC2H, (98; 99.9)2' 
50 CH,COCH(CH,)COSC,H, (98; 99.9)" 
51 N,CH2COCH,OCOCH, (87.9; 87.3)22 

53 N,CH,COCH2OCOC(CH3)3 (95; 96.9)22 
54 CH,CO(CHZ),NO, (99; 99.8)23 
55 C2H,COCH2CH2CH3 (83.5; 99.8)*, 

57 n-C,HyCOCH,COOH (0; 1.2)' 
58 n-C3H7COCH2CO2CzHs (98; 99.8)2' 

60 C,H,CH,0(CH,)2COCH,C0,C,H13 (98; 96.2)26 
61 CH3COCHzOH (04.5; 12.6)27 
62 CH,CH2CH2COCH20H (0; 0.8)27 
63 C4HyCOCHzOH (0; 0.3)27 
64 CH3COCOOC2Hs (95.5; 99)'' 
65 CH3CH2COCOOC2HS (87.5; 92.5)'' 
66 C,HSCOCOOCH, (0; 0.8)'' 
67 C,HsCOCONHz (0; 0.4)15 
68 ~ - F u I ~ ~ - C O C O O C H ~ ( ~ ;  2.3)2' 
69 CH,COCHb (98; 99.9)'' 

52 N,CH2COCH20COC6Hs (89; 88)22 

56 C,H,OCOCH,COCH,Br(99; 9.5)', 

59 C6HsCHzOCHzCH2COCH2C02-i-C,H, (98; 92.7)26 

70 C,H,COCHb (98; 99.6)2y 
71 CH,OCH,COCH~ (97.5; 99.913" 
72 CH3COCHzSOOCnH5 (97.5; 99.9),' 
73 CH,COCH,SCH, (97.5; 99.6),' 

"In parentheses: %So, and %S,,,, using neural network [equation (7)]. 
hAldehyde protected by HS(CH,),SH. 

Structure-enantioselectivity relationships were estab- 
lished using regression analysis and the neural network 
approach. the following transfer function. 

propagation algorithm. Each neuron of a given layer 
(except the input one) takes a value Y calculated using 

Neural network 
The neural network3'z3* used has a configuration with 
three layers and complete connections between neurons 
(Figure 1). The input layer (layer I)  is constituted by the 
descriptors used, the hidden layer (layer H) has five 
neurons (determined after several trials) and the 
output layer (layer 0) is constituted by one neuron and 
represents the calculated %S (indicating the 
enantioselectivity ). 

Estimation of the weights was made using the back 

Yj = value of neuron j in the input layer I; Y, = value 
of neuron k in the hidden layer H; Y,=value of the 
output neuron 0; yk= weight of the connection 
between neuron j in layer I and neuron k in layer H; 
W,, = weight of the connection between neuron k in 
layer H and the output neuron 0. 

After several attempts, b was taken equal to 1 and c 
equal to 0. The network was trained and weights 
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Figure 1. Configuration of neural network used. Y, = value of 
neuron j in the input layer I; Y ,  = value of neuron k in the hidden 
layer H; Yo = value of the output neuron 0; W,, = weight of the 
connection between neuron j in layer I and neuron k in layer H; 
W,, = weight of the connection between neuron k in layer H and 

the output neuron 0 
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modified until minimizing the cost C defined as: 

n = number of compounds (2) 
Contribution of each descriptor was calculated using the 
following relation: 39 

(3)  

(4) 

RESULTS AND DISCUSSION 
The two methods of description were tested and that 
based on the CIP rules was found the most adequate. 

Regression analysis 
Data set subjected to regression analysis, in order to 
establish a linear model between the percentage of the S 
enantiomer and the descriptors used, leads to the follow- 
ing model. 
(%s),,, = (-20.21 * 2 * 4 5 ) v , / v ,  

+ (14.84 f %7O)Lip, + 84.65 (6)  
n = 73; r = 0.82; s = 23.76; 

V ,  and V,  are the Van der Waals volumes of R ,  and R ,  
respectively. Lip, is the estimated contribution of R ,  to 
log P. Correlation coefficient between V, /V2  and Lip, is 
equal to -0.30. 

The Coefficients associated with descriptors were 
statistically significant at more than 99%. The calculated 
contribution for descriptors (V , /V ,  and Lip,) were 64% 
and 36% respectively. 

Table 2. Weight matrix for the connections between neurons' 

H, H2 H, H4 HS 

I, -0.19 -3.40 0.65 0.98 -2.22 
4 -1.38 1.17 -1.05 4.08 0.27 
I, -2.96 1.81 -3.37 -1.69 5.05 
0 5.62 5.71 5.85 6.44 -5.84 

'Il, I, and I,: input neurons representing descriptors (Lip,, Lip, and 
V , / V ,  respectively); HI -H5, hidden neurons; 0, output neuron. 
Number of cycles = 6000. 

1 2 O f T t  

-2 ,f 
-20 0 20 40 60 80 100 120 
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Figure 2. Correlation between %Sob, and %S,,,, using neural 
network (equation 7) 

Considering the correlation coefficient, equation (6 )  
is not of good quality, then regression analysis is not 
appropriate for enantioselectivity modelling for the 
studied sample. This is due to the nonlinearity of the 
phenomenon vs the structural features of R ,  and R ,  
groups. To overcome this problem, we used the neural 
network approach recently known as a promising 
technique. Lip,, Lip, and V , / V ,  were considered as 
inputs. The correlation coefficient between Lip, and 
V I / V 2  is 0.41 and that between Lip, and Lip, is -0.13. 

Neural network (NN) 
Data were subjected as a training set to the NN having a 
3-5-1 configuration in order to determine the weights of 
the connections between all the neurons (Table 2). The 
best connection's weights are summarized in Table 2. 

As shown in Table 1 ( or Figure 2) ,  the calculated %S 
using the neural network is generally in good agreement 
with that observed. 

The correlation coefficient between observed and 
calculated %S is 0.99: 

(7) 
%Sob,, = (0.98 * 0.O2)%Sc,,, - 0.70 
n = 73; r = 0.99; s = 6.29 
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Table 3. Correlation coefficient and contribution of each 
variable for all trials 

$1 
0 0 00  

0 0 0 

0 
L o o  00 0 

Trial 

~~~ ~ 

No. of 
of compounds 

Contribution (%)" 

r' VJV, Lip, Lip, 

65 
65 
65 
65 
65 
65 
6s  
65 
64 

0.988 
0.982 
0.984 
0.980 
0.994 
0.982 
0.985 
0.983 
0.984 

64 25 11 
55 27 18 
44 34 22 
50 38 12 
48 34 18 
43 39 18 
47 38 15 
67 30 13 
60 28 12 

~~~~ ~~ ~~ 

'Correlation coefficient. 

The quality of equation (7) showed that the NN appro- 
ach is more efficient than regression analysis in the 
enantioselectivity modelling. Any clouds of points corre- 
sponding to particular experimental parts were observed. 

Prediction ability of the model 
To test the prediction ability of the model, we elaborated 
a series of new models on the basis of 65 compounds 
only. Each time, the remaining compounds were used as a 
test. The compounds tested were chosen with respect to 
the composition of the basic sample (e.g. two compounds 
leading to R mainly and six leading to S mainly). 

The procedure was repeated nine different times in 
order to predict the enantioselectivity for all compounds 
of the basic training set (see Table 3). 

The correlation coefficient between the calculated 
(using the models established on the basis of sets of 
65 compounds) and observed %S is relatively similar 
than that observed in equation (7) [equation (8), 
Figure 31 

(8) 
%Sobs, = (0.94 f 0.03)%SCd,, + 0.89 
n = 73; r = 0.97; s = 10.67 

The correlation coefficients observed for all trials 
(Table 3) showed that the models established were in 

- 2 0 1  
-20 0 20 40 60 80 100 120 

%Scalc. 

Figure 3. Correlation between %Soh, and %S,,,, using neural 
network (equation 8) 

good agreement with the global model. Descriptors were 
classified, according to their contributions for all trials, 
as follow: V , / V ,  > Lip, >Lip,. All these results revealed 
good stability of the studied structure-enantioselectivity 
relationships, and confirm the fact that enantioselectiv- 
ity depends essentially on the structural features of the 
molecule. 

Prediction of the enantioselectivity of the 
bioconversion of other type of compound 

Recently, Be1 RhlidW achieved the bioconversion of a- 
diketones using different microorganisms, including 
baker's yeast (B.Y.), such as Beauveria sulfurescens 
(B.S.), Geotrichum candidum (G.C.), Rhodotorula 
rubra (R.R.) and Dipodascopsis uninucleutu (D.U.). 
We attempted to predict the enantioselectivity of the 
bioconversions that he carried out using the NN model. 
Table 4 shows a comparison between the observed 
configuration and predicted %S. All the predicted results 
were in good agreement with the observed values except 
for compound 78, which was predicted to be near a 
racemic mixture. 

In conclusion, we have shown that the enantioselec- 
tivity of the bioconversion of carbonyl compounds by 
baker's yeast can be quantitatively estimated using a 
neural network model. Reaction conditions are certainly 

Table 4. Observed configuration and predicted %S for C=O group bioconversion 

Compound B.S. B.Y. G.C. R.R. D.U. %S" 

74: H,CCOCOCH, 2s 2s  2s  2s  2s  78.5 (S) 

76: H,CCOCOC,H,, 2 s  2 s  2 s  2s  3 s  99.9 (S) 
77: H,CCOCOC,H, 2 s  2 s  2 s  2 s  - 99.9 (S) 

79: H,C2COCO(CH,),CH=CH2 3 s  3 s  3 s  - - 99.4 (S )  

75: H,CCOCOC,H, 2 s  2 s  - - 3 s  93.1 (S) 

78: H,C,COCOC,H, 3 s  3 s  3 s  - - 52.2 (S) 

a %S calculated using the NN model [Table 2). 
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important features; however, we demonstrated that the 
enantioselectivity was essentially due to the structural 
features of the molecule. The obtained model was tested 
with success in the prediction of the enantioselectivity 
for the studied compounds and also for other type of 
molecules. 
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